Abstract
This paper demonstrates the utility of the high-dimensional harmonic balance (HDHB) method for locating limit cycles of second-order delay-differential equations (DDEs). A matrix version of the HDHB method for systems of DDEs is described in detail. The method has been successfully applied to capture the stable and/or unstable limit cycles in three different models: a machine tool vibration model, the sunflower equation and a circadian rhythm model. The results show excellent agreement with collocation and continuation-based solutions from DDE-BIFTOOL. The advantages of HDHB over the classical harmonic balance method are highlighted and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.