Real-time decision making relies on the availability of accurate data and, therefore, delivering status updates in a timely fashion is of paramount importance. The topic of real-time status updates has received much attention in recent years. This article contributes new results to this research area by studying the interplay between average timeliness and design decisions made at the physical layer, for unreliable communication channels. Specifically, this study explores the tension between the fact that more reliable transmissions with lower probabilities of decoding failure tend to improve timely delivery, unless these improvements come at the expense of significantly longer codewords. The average timeliness is adopted as an evaluation criterion, and a framework to efficiently compute the performance of various transmission schemes for the binary erasure channel is developed. We show that the average timeliness decreases as we increase the feedback rate in a hybrid ARQ scheme for a range of codeword lengths. This article also provides design guidelines for the codeword length selection for an hybrid ARQ scheme to improve the average information timeliness. Numerical examples are included to further illustrate the applicability of our findings.