Abstract

This paper presents an approach to recursively estimate the simplest linear model that approximates the time-varying local behaviors from imperfect (noisy and incomplete) measurements in the internet of things (IoT) based distributed decision-making problems. We first show that the problem of finding the lowest order model for a multi-input single-output system is a cardinality (ℓ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> ) optimization problem, known to be NP-hard. To solve the problem a simpler approach is proposed which uses the recently developed atomic norm concept and the modified Frank-Wolfe (mFW) algorithm is introduced. Further, the paper computes the minimum data-rate required for computing the models with imperfect measurements. The proposed approach is illustrated on a building heating, ventilation, and air-conditioning (HVAC) control system that aims at optimizing energy consumption in commercial buildings using IoT devices in a distributed manner. The HVAC control application requires recursive thermal dynamical model updates due to frequently changing conditions and non-linear dynamics. We show that the method proposed in this paper can approximate such complex dynamics on single-board computers interfaced to sensors using unreliable communication channels. Real-time experiments on HVAC systems and simulation studies are used to illustrate the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.