This study investigated differences and shifts in learning and motivation constructs among male and female students in a nonmajors, yearlong structured inquiry college physics course and examined how these variables were related to physics understanding and course achievement. Tests and questionnaires measured students' learning approaches, motivational goals, self‐efficacy, epistemological beliefs, scientific reasoning abilities, and understanding of central physics concepts at the beginning and end of the course. Course achievement scores were also obtained. The findings showed that male students had significantly higher self‐efficacy, performance goals, and physics understanding compared to females, which persisted throughout the course. Differential shifts were found in students' meaningful learning approaches, with females tending to use less meaningful learning from beginning to end of the course; and males using more meaningful learning over this time period. For both males and females, self‐efficacy significantly predicted physics understanding and course achievement. For females, higher reasoning ability was also a significant predictor of understanding and achievement; whereas for males, learning goals and rote learning were significant predictors, but in a negative direction. The findings reveal that different variables of learning and motivation may be important for females' success in inquiry physics compared to males. Instructors should be cognizant of those needs in order to best help all students learn and achieve in college physics.
Read full abstract