We prove analytically that there exist delay equations admitting rapidly oscillating stable periodic solutions. Previous results were obtained with the aid of computers, only for particular feedback functions. Our proofs work for stiff equations with several classes of feedback functions. Moreover, we prove that for negative feedback there exists a class of feedback functions such that the larger the stiffness parameter is, the more stable rapidly oscillating periodic solutions there are. There are stable periodic solutions with arbitrarily many zeros per unit time interval if the stiffness parameter is chosen sufficiently large.
Read full abstract