Abstract

Freezing of supercooled water on a metallic plate was studied, experimentally. First of all, a gold plated surface was selected as a metallic surface because the surface has very little change in the characteristics of the surface against time. The experiments on freezing under various cooling rates were carried out and the probability of freezing per unit surface area per unit time interval was calculated. It was found that the probability was independent of the cooling rate. Secondly, in order to clarify the effect of oxidation on freezing of supercooled water, an electrolytically polished copper surface was selected and a time variation of the probability of freezing was investigated. A large number of experimental data is required to obtain an accurate value for the probability, but it is impossible to perform it before the characteristics of the surface changes. Hence, in order to cover a wide range of the degree of supercooling at freezing in a short period of time, experiments were carried out under various cooling rates. It was found that the oxidation of the surface restrained the supercooled water on the surface from freezing. By comparing the results with the one for a gold plated surface, a parameter was obtained to express the characteristics of the surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call