Abstract

In order to clarify effects of bubble nuclei on freezing of supercooled water, various kinds of experiments were carried out with invisible sizes of bubbles in supercooled water. Water samples were kept in a test tube and cooled down at a constant cooling rate until the water solidified. The degree of supercooling at freezing was then measured. Two kinds of water surfaces were applied. One was exposure to the atmosphere, and the other was covered with silicone oil. Three kinds of pressure conditions were applied. The first type was atmospheric pressure. The second type was compression up to 6.0 atm. The third type was evacuated down to 0.02 atm. Two holding time periods before starting the experiments were applied. One was 30 min and the other was 24 h. It was found that the degree of supercooling at freezing is high in the case of the free surface compared to the one with oil–water surface. The reason suggested was that the bubbles in the water can be released from the surface in the case of normal atmospheric exposure and trapped at the oil–water interface in the case of water covered with oil. Hence, it was clarified that the freezing of supercooled water is affected by the existence of bubble nuclei.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.