Stroke occurs in all age groups, ranging from the newborn to the elderly. The immature brain is generally believed to be more resistant to the damaging effects of cerebrovascular compromise compared to the more mature brain. However, recent experiments suggest that the correlation between brain damage and age is not linear. To determine the effects of age and development on hypoxic-ischemic brain damage, we developed a model whereby rats of increasing age received identical cerebrovascular insults, and assessed neuropathologic outcome. Male Wistar rats of 1, 3, 6, and 9 weeks and 6 months underwent unilateral common carotid artery ligation and exposure to 12% oxygen for 35 min. Animals were all spontaneously breathing under light halothane anesthesia (0.5%). Core temperatures were maintained at 37°C. Blood pressures were monitored via indwelling carotid artery catheters on the side ipsilateral to the carotid artery ligation. Cerebral blood flow was assessed in separate groups utilizing Laser Doppler flowmetry. Physiologic monitoring revealed that under these experimental conditions, mean arterial blood pressure and cerebral blood flow decreased to the same extent in each of the age groups, verifying that all animals experienced an identical insult. Neuropathologic assessment at 7 days of recovery showed that brain damage was most severe in the 1 and 3 week old animals followed by those that were 6 months. The 6 and 9 week old groups had significantly less injury than the other 3 age groups. Hippocampal damage was most severe in the 3 week and 6 month old rats compared to all other age groups. Our findings contrast previously held beliefs regarding the enhanced tolerance of the immature brain to hypoxic-ischemic damage and demonstrates that, in a physiologically controlled in vivo model of hemispheric global ischemia, (1) the immature brain is, in fact, less resistant to hypoxic-ischemic brain damage than its adult counterpart, (2) the brain damaging effects of hypoxic-ischemia are age dependent, but do not increase linearly with adbancing age and development, and (3) the intermediate age groups are more tolerant to hypoxic-ischemic brain injury than either very young or more mature ages.
Read full abstract