Uneven etching and low fabrication efficiency impede the large-scale applications of copper-assisted chemical etching (Cu-ACE) for texturing light-trapping structures on the surface of silicon wafers. To address this, a composite additive composed of tetrabutylammonium bromide (TBAB) and sodium dodecyl sulfate (SDS) was introduced into the Cu-ACE system. The results indicated that TBAB accelerated the etching rate and improved the texturing uniformity, while SDS enlarged the size of the formed structures and enhanced their ultraviolet light absorption efficiency. The prepared inverted pyramid structure reduced the reflectivity of the silicon wafer surface to 3.8 %, thus exhibiting efficient light-trapping capabilities. The etching evolution under various TBAB concentrations and different HF/H2O2 ratios was studied by characterizing the surface contact angle and copper deposition morphology. The results indicated that electrostatic attraction between TBAB and dangling bonds on the silicon wafer surface enhanced material transfer at the reaction interface and changed the electron distribution around dangling bonds, thus facilitating the catalytic metal attack on these bonds. The copper ion reactivity was decreased due to complexation between the dissociated alkyl sulfate ions of SDS and copper ions, which favored the deposition of larger copper nanoparticles during etching, thereby increasing the size of structures. This research offers valuable insights to enable the large-scale applications of Cu-ACE.
Read full abstract