We investigate Beurling-Fourier algebras, a weighted version of Fourier algebras, on various Lie groups focusing on their spectral analysis. We will introduce a refined general definition of weights on the dual of locally compact groups and their associated Beurling-Fourier algebras. Constructions of nontrivial weights will be presented focusing on the cases of representative examples of Lie groups, namely SU(n), the Heisenberg group H, the reduced Heisenberg group Hr, the Euclidean motion group E(2) and its simply connected cover E˜(2). We will determine the spectrum of Beurling-Fourier algebras on each of the aforementioned groups emphasizing its connection to the complexification of underlying Lie groups. We also demonstrate that “polynomially growing” weights do not change the spectrum and show the associated regularity of the resulting Beurling-Fourier algebras.
Read full abstract