Abstract

Abstract We provide a tutorial and review of the state-of-the-art in robot dynamics algorithms that rely on methods from differential geometry, particularly the theory of Lie groups. After reviewing the underlying Lie group structure of the rigid-body motions and the geometric formulation of the equations of motion for a single rigid body, we show how classical screw-theoretic concepts can be expressed in a reference frame-invariant way using Lie-theoretic concepts and derive recursive algorithms for the forward and inverse dynamics and their differentiation. These algorithms are extended to robots subject to closed-loop and other constraints, joints driven by variable stiffness actuators, and also to the modeling of contact between rigid bodies. We conclude with a demonstration of how the geometric formulations and algorithms can be effectively used for robot motion optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.