The aging and complexity of underground water pipes pose significant challenges to modern society, necessitating long-term monitoring and maintenance to prevent the socioeconomic costs. So, effective nondestructive and geophysical methods are needed to localize the possible leakage areas before any rational opening up is conducted. In this study, we propose a workflow to generate instantaneous frequency slices (IFS) from raw ground penetrating radar (GPR) data. Characterizing the horizontal and vertical patterns of water leakage using IFS revealed two key mechanisms—reflections due to the dry and wet interface and absorption due to water distributed in soil—that significantly influence instantaneous frequency. A well-designed real site (Q-Leak), in collaboration with the Water Supplies Department (WSD) of the government, was conducted to replicate typical leakage scenarios, validating the effectiveness of our IFS-based approach. The results of proposed method demonstrate that IFS is a reliable approach for characterizing leakages in buried water pipes, effectively addressing several challenges associated with amplitude slice analysis. Our proposed methodology enriches the toolkit available for large-scale, future-oriented water leakage detection.