Abstract

As a typical cyber-physical system (CPS), smart water distribution networks require monitoring of underground water pipes with high sample rates for precise data analysis and water network control. Due to poor underground wireless channel quality and long-range communication requirements, high transmission power is typically adopted to communicate high-speed sensor data streams, posing challenges for long-term sustainable monitoring. In this article, we develop the first sustainable water sensing system, exploiting energy harvesting opportunities from water flows. Our system does this by scheduling the transmission of a subset of the data streams, whereas other correlated streams are estimated using autoregressive models based on the sound-velocity propagation of pressure signals inside water networks. To compute the optimal scheduling policy, we formalize a stochastic optimization problem to maximize the estimation reliability while ensuring the system’s sustainable operation under dynamic conditions. We develop data transmission scheduling (DTS), an asymptotically optimal scheme, and FAST-DTS, a lightweight online algorithm that can adapt to arbitrary energy and correlation dynamics. Using more than 170 days of real data from our smart water system deployment and conducting in vitro experiments to our small-scale testbed, our evaluation demonstrates that Fast-DTS significantly outperforms three alternatives, considering data reliability, energy utilization, and sustainable operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.