The efficiency of external strengthening using CFRP (Carbon Fiber Reinforced Polymer) sheets to rehabilitate corrosion-defected RC (Reinforced Concrete) beam–column members is experimentally studied. ALL specimens were tested under a combined axial force and transverse load until failure. The axial forces were applied with two levels either 25% or 50% of the ultimate design load of control specimen. The accelerated corrosion process was used to get steel reinforcement corrosion inside the concrete at three levels, 0% and approximately 5% and 20%, according to Faraday’s law. External strengthening with a CFRP sheet was used in this study to overcome the effect of deterioration in the mechanical properties of the corroded steel bars. A significant deterioration in the load carrying capacity, stiffness, and serviceability was recorded for corrosion-defected specimens. The increase of the axial force was recorded as a positive effect on the ultimate strength, stiffness, and serviceability of the testing specimens. This effect was clearly evident for the defected specimens, with an increasing corrosion level, by decreasing the adverse effects of corrosion. The external strengthening with a CFRP sheet restored the load-carrying capacity, stiffness, and serviceability to an undamaged state.