Abstract
This paper proposes a Convolutional Neural Network (CNN) based approach for the classification and prediction of various types of in-plane and through-the-thickness delamination in smart composite laminates using low-frequency structural vibration outputs. An electromechanically coupled mathematical model is developed for the healthy and delaminated smart composite laminates, and their structural vibration responses are obtained in the time domain. Short Time Fourier Transform (STFT) is employed to transform the transient responses into two-dimensional spectral frame representation. A convolutional neural network is incorporated to distinguish between the damaged and undamaged states, as well as various types of damage of the laminated composites, by automatically extracting discriminative features from the vibration-based spectrograms. The CNN showed a classification accuracy of 90.1% on one healthy and 12 delaminated cases. The study of the confusion matrix of CNN provided further insights into the physics of the problem. The predictive performance of a pre-trained CNN classifier was also evaluated on unseen cases of delamination, and physically consistent results were obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.