Expansive soil poses significant challenges for engineering due to its susceptibility to swelling and shrinkage. This study aims to explore effective methods for improving its mechanical properties using single alkaline activators, single slag, and their combination. Laboratory experiments were conducted to evaluate the unconfined compressive strength (UCS) and analyze curing mechanisms through X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results demonstrate that all three treatments enhance soil strength, with the combination of alkali-activated slag being the most effective, followed by the single alkaline activator and single slag. Optimal dosages were determined as 15% for the activator and slag individually and 15% activator combined with 20% slag, yielding the densest structure and highest UCS. The activator's modulus of 1.5 was found to be optimal, and strength improved further with extended curing time. A microscopic analysis revealed that alkaline activation formed gel-like substances and dense needle-like structures, while slag generated CaCO3 and Ca(OH)2. The combination produces a synergistic effect, creating substantial amounts of C-S-H, C-A-S-H gel, and dense needle-like structures, which enhance soil compactness and strength by binding particles and filling voids. These findings provide insights into the curing mechanisms and offer practical solutions for improving expansive soil in engineering applications.
Read full abstract