Precambrian tropical glaciation is an enigma of Earth’s climate. Overlooking fundamental difference of land/sea icelines, it was equated with a global frozen ocean, which is at odds with the sedimentary evidence of an active hydrological cycle, and its genesis via the runaway ice–albedo feedback conflicts with the mostly ice-free Proterozoic when its trigger threshold was well exceeded by the dimmer sun. In view of these shortfalls, I put forth two key hypotheses of the tropical glaciation: first, if seeded by mountain glaciers, the land ice would advance on sea level to be halted by above-freezing summer temperature, which thus abuts an open cozonal ocean; second, a tropical supercontinent would block the brighter tropical sun to cause the required cooling. To test these hypotheses, I formulate a minimal tropical/polar box model to examine the temperature response to a varying tropical land area and show that tropical glaciation is indeed plausible when the landmass is concentrated in the tropics despite uncertain model parameters. In addition, given the chronology of paleogeography, the model may explain the observed deep time climate to provide a unified account of the faint young Sun paradox, Precambrian tropical glaciations, and Phanerozoic glacio-epochs, reinforcing, therefore, the uniformitarian principle.
Read full abstract