Many coupled evolution equations can be described via 2×2-block operator matrices of the form A=[ABCD] in a product space X=X1×X2 with possibly unbounded entries. Here, the case of diagonally dominant block operator matrices is considered, that is, the case where the full operator A can be seen as a relatively bounded perturbation of its diagonal part with D(A)=D(A)×D(D) though with possibly large relative bound. For such operators the properties of sectoriality, R-sectoriality and the boundedness of the H∞-calculus are studied, and for these properties perturbation results for possibly large but structured perturbations are derived. Thereby, the time dependent parabolic problem associated with A can be analyzed in maximal Ltp-regularity spaces, and this is applied to a wide range of problems such as different theories for liquid crystals, an artificial Stokes system, strongly damped wave and plate equations, and a Keller-Segel model.