Abstract

Many coupled evolution equations can be described via 2×2-block operator matrices of the form A=[ABCD] in a product space X=X1×X2 with possibly unbounded entries. Here, the case of diagonally dominant block operator matrices is considered, that is, the case where the full operator A can be seen as a relatively bounded perturbation of its diagonal part with D(A)=D(A)×D(D) though with possibly large relative bound. For such operators the properties of sectoriality, R-sectoriality and the boundedness of the H∞-calculus are studied, and for these properties perturbation results for possibly large but structured perturbations are derived. Thereby, the time dependent parabolic problem associated with A can be analyzed in maximal Ltp-regularity spaces, and this is applied to a wide range of problems such as different theories for liquid crystals, an artificial Stokes system, strongly damped wave and plate equations, and a Keller-Segel model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.