The methyltransferase ribozyme SMRZ-1 utilizes S-adenosyl-methionine (SAM) and Cu (II) ions to methylate RNA. Comparison of the SAM bound and unbound RNA structures has shown a conformational change in the RNA. However, the contribution of specific interactions and the role of a pseudo-triplex motif in the catalytic centre on the methylation reaction is not completely understood. In this study, we have used atomic substitutions and mutational analysis to investigate the reaction specificity and the key interactions required for catalysis. Substitution of the fluorescent nucleotide 2-aminopurine within the active ribozyme enabled the conformational dynamics of the RNA upon co-factor binding to be explored using fluorescence spectroscopy. We show that fast co-factor binding (t1/2 ∼ 0.7 seconds) drives a conformational change in the RNA to facilitate methyl group transfer. The importance of stacking interactions at the pseudo-triplex motif and chelation of the Cu (II) ion were shown to be essential for SAM binding.