Abstract
The coagulation of rare-gas atoms (RG = Ne, Ar, Kr, Xe, and Rn) in helium nanodroplets (HNDs) composed of 1000 atoms is investigated by zero-point averaged dynamics where a He-He pseudopotential is used to make the droplet liquid with proper energies. This method reproduces the qualitative abundances of embedded Arn+1 structures obtained by Time-Dependent Density Functional Theory and Ring Polymer Molecular Dynamics for Ar + ArnHe1000 collisions at realistic projectile speeds and impact parameters. More generally, coagulation is found to be much more efficient for heavy rare-gases (Xe and Rn) than for light ones (Ne and Ar), a behavior mainly attributed to a slower energy dissipation of the projectile in the HND. When coagulation does not occur, the projectile maintains a speed of 10-30m s-1 within the HND, but its velocity vector is rarely oriented toward the dopant, and the projectile roams in a limited region of the droplet. The structure of embedded RGn+1 clusters does not systematically match their gas-phase global minimum structure, and more than 30% of RGn-RG unbound structures are due to one He atom located in between the projectile and a dopant atom.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have