The acceleration of interstellar pick-up ions as well as solar wind species has been observed at a multitude of interplanetary (IP) shocks by different spacecraft. The efficiency of injection of the pick-up ion component differs from that of the solar wind, and is expected to be strongly enhanced at highly oblique and quasi-perpendicular shock events, in accord with inferences from in situ observations. This paper explores theoretical modeling of the phase space distributions of accelerated ions obtained by the Ulysses mission for the Day 292, 1991 shock associated with a corotating interaction region, encountered before Ulysses’ fly-by of Jupiter. A Monte Carlo simulation is used to model the acceleration process, adapting a technique that has been successfully tested on earlier IP shocks possessing minimal pick-up ion presence. Phase space distributions from the simulation technique for various low mass ions are compared with SWICS and HI-SCALE data to deduce values of a “turbulence parameter” that controls the efficiency of injection, and the degree of cross-field diffusion. Acceptable fits are obtained for the H + and He + populations using standard prescriptions for the pick-up ion distribution; He ++ spectral data was only fit well for scenarios very close to the Bohm diffusion limit. It is also found that the simulation successfully accounts for the observation of energetic protons farther upstream of the forward shock than lower energy pick-up protons, using the same turbulence parameter that is required to achieve reasonable spectral fits.
Read full abstract