Abstract

An overview is given on what we know about the cosmic ray diffusion process from the modelling of low-energy (MeV) electron transport in the heliosphere. For energies below ∼300 MeV, these electrons give a direct indication of the average mean free paths because they do not experience large adiabatic energy changes and their modulation is largely unaffected by global gradient and curvature drifts. Apart from galactic cosmic ray electrons, the jovian magnetosphere at ∼5 AU in the ecliptic plane is also a relatively strong source of MeV electrons, with energies up to ∼30 MeV. Therefore, when modelling the transport of these particles in the inner heliosphere, a three-dimensional treatment is essential. By comparing these models to observations from the Ulysses, Pioneer and Voyager missions, important conclusions can be made on e.g., the relative contributions of the galactic and jovian electrons to the total electron intensity, the magnitude of the parallel and perpendicular transport coefficients, and the time dependant treatment thereof.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.