Lithium sulfur (Li-S) batteries are attracting increasing attentions as promising next-generation rechargeable batteries. However, the rapid capacity fading of sulfur cathodes caused by the shuttling of polysulfide intermediates between the cathodes and anodes restricts the application of Li-S batteries. In this work, a facile wet-chemistry method is developed for the direct synthesis of few-molecular-layer thin metal-organic framework (MOF) nanosheets without using surfactant. By assembling these ultrathin MOF nanosheets with a facile vacuum filtration method, a highly oriented and flexible MOF membrane with favorable mechanical properties is achieved for the first time. The excellent features make the as-prepared MOF nanosheets ideal to fabricate lightweight interlayer modified separators for suppressing the polysulfide shuttling of Li-S batteries. When using the MOF membrane modified separator, the Li-S batteries made from commercial carbon materials exhibits the significantly enhanced cycling stabilities. This work brings new opportunities for the synthesis and application of MOF materials.
Read full abstract