Abstract
Creating ordered two-dimensional (2D) metal-organic framework (MOF) nanosheets has attracted extensive interest. However, it still remains a great challenge to synthesize ultrathin 2D MOF nanosheets with controlled thickness in high yields. In this work, we demonstrate a novel intercalation and chemical exfoliation approach to obtain MOF nanosheets from intrinsically layered MOF crystals. This approach involves two steps: first, layered porphyrinic MOF crystals are intercalated with 4,4'-dipyridyl disulfide through coordination bonding with the metal nodes; subsequently, selective cleavage of the disulfide bond induces exfoliation of the intercalated MOF crystals, leading to individual freestanding MOF nanosheets. This chemical exfoliation process can proceed efficiently at room temperature to produce ultrathin (∼1 nm) 2D MOF nanosheets in ∼57% overall yield. The obtained ultrathin nanosheets exhibit efficient and far superior heterogeneous photocatalysis performance compared with the corresponding bulk MOF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.