Ultrasonic vibration-assisted machining (UVAM) is an effective and promising technology for processing hard and brittle materials, it has been explored in many experimental and theoretical investigations. In this paper, a study on the erosion performance of monocrystalline silicon with UVAM is presented and discussed. In the erosion experiments, monocrystalline silicon wafers were eroded by the abrasive water jet machine assisted with an ultrasonic vibration system. A contrast experiment was carried out firstly to study the influence of the ultrasonic vibration, and then an orthogonal experiment investigation was carried out to understand the effect of process variables (the abrasive particle diameter, jet impact angle, standoff distance, abrasive mass flow rate and ultrasonic vibration power) on the depth of erosion and material removal rate (MRR). The experimental results revealed that ultrasonic vibration-assisted abrasive water jet erosion (UVA-AWJE) can obviously improve the depth of the erosion and MRR compared with those in traditional AWJE and the variation trends of the effect of the abrasive particle diameter, jet impact angle, standoff distance and abrasive mass flow rate on the erosion performance in UVA-AWJE are very similar to those effect in the traditional AWJ machining.
Read full abstract