Ultrasound (US) has afforded an approach to tissue characterization for more than a decade. The challenge is to reveal hidden patterns in the US data that describe tissue function and pathology that cannot be seen in conventional US images. Our group has developed a high-resolution analysis technique for tissue characterization termed H-scan US, an imaging method used to interpret the relative size of acoustic scatterers. In the present study, the objective was to compare local H-scan US image intensity with registered histologic measurements made directly at the cellular level. Human breast cancer cells (MDA-MB 231, American Type Culture Collection, Manassas, VA, USA) were orthotopically implanted into female mice (N=5). Tumors were allowed to grow for approximately 4 wk before the study started. In vivo imaging of tumor tissue was performed using a US system (Vantage 256, Verasonics Inc., Kirkland, WA, USA) equipped with a broadband capacitive micromachined ultrasonic linear array transducer (Kolo Medical, San Jose, CA, USA). A 15-MHz center frequency was used for plane wave imaging with five angles for spatial compounding. H-scan US image reconstruction involved use of parallel convolution filters to measure the relative strength of backscattered US signals. Color codes were applied to filter outputs to form the final H-scan US image display. For histologic processing, US imaging cross-sections were carefully marked on the tumor surface, and tumors were excised and sliced along the same plane. By use of optical microscopy, whole tumor tissue sections were scanned and digitized after nuclear staining. US images were interpolated to have the same number of pixels as the histology images and then spatially aligned. Each nucleus from the histologic sections was automatically segmented using custom MATLAB software (The MathWorks Inc., Natick, MA, USA). Nuclear size and spacing from the histology images were then compared with local H-scan US image features. Overall, local H-scan US image intensity exhibited a significant correlation with both cancer cell nuclear size (R2 > 0.27, p < 0.001) and the inverse relationship with nuclear spacing (R2 > 0.17, p < 0.001).
Read full abstract