Abstract

This paper presents a method for measuring surface cracks based on the analysis of Rayleigh waves in the frequency domain. The Rayleigh waves were detected by a Rayleigh wave receiver array made of a piezoelectric polyvinylidene fluoride (PVDF) film and enhanced by a delay-and-sum algorithm. This method employs the determined reflection factors of Rayleigh waves scattered at a surface fatigue crack to calculate the crack depth. In the frequency domain, the inverse scattering problem is solved by comparing the reflection factor of the Rayleigh waves between the measured and the theoretical curves. The experimental measurement results quantitatively matched the simulated surface crack depths. The advantages of using the low-profile Rayleigh wave receiver array made of a PVDF film for detecting the incident and reflected Rayleigh waves were analyzed in contrast with those of a Rayleigh wave receiver using a laser vibrometer and a conventional lead zirconate titanate (PZT) array. It was found that the Rayleigh waves propagating across the Rayleigh wave receiver array made of the PVDF film had a lower attenuation rate of 0.15 dB/mm compared to that of 0.30 dB/mm of the PZT array. Multiple Rayleigh wave receiver arrays made of the PVDF film were applied for monitoring surface fatigue crack initiation and propagation at welded joints under cyclic mechanical loading. Cracks with a depth range of 0.36-0.94 mm were successfully monitored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call