Abstract
Tai Chi is a Chinese martial art that provides an adaptive and accessible exercise for older adults with varying functional capacity. While Tai Chi is widely recommended for its physical benefits, wider adoption in at-home practice presents challenges for practitioners, as limited feedback may hamper learning. This study examined the feasibility of using a wearable sensor, combined with machine learning (ML) approaches, to automatically and objectively classify Tai Chi expertise. We hypothesized that the combination of wrist acceleration profiles with ML approaches would be able to accurately classify practitioners' Tai Chi expertise levels. Twelve older active Tai Chi practitioners were recruited for this study. The self-reported lifetime practice hours were used to identify subjects in low, medium, or highly experienced groups. Using 15 acceleration-derived features from a wearable sensor during a self-guided Tai Chi movement and 8 ML architectures, we found multiclass classification performance to range from 0.73 to 0.97 in accuracy and F1-score. Based on feature importance analysis, the top three features were found to each result in a 16-19% performance drop in accuracy. These findings suggest that wrist-wearable-based ML models may accurately classify practice-related changes in movement patterns, which may be helpful in quantifying progress in at-home exercises.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.