Implementation of piezoelectric multilayer ceramic (MLC) is an effective way to reduce impedance and improve the performance of linear-array transducer for ultrasonic system applications. However, the ultrasonic image derived from a planar linear-array transducer generally suffers from degradation of lateral resolution and contrast. In this article, we designed and fabricated a focused 5-MHz 128-element linear-array ultrasonic transducer with concave structure using five-layered 0.1Pb (Ni1/3Nb2/3)O3 -0.35Pb(Zn1/3Nb2/3)O3 -0.15Pb(Mg1/3Nb2/3)O3-0.1PbZrO3-0.3PbTiO3 (PNN-PZN-PMN-PZ-PT) piezo- electric ceramic. The transducer showed a bandwidth of 63% at -6 dB and the lateral resolution up to 0.33 mm. An improved transmission signal of 90% higher than a commercial single-layer ceramic transducer was also achieved. We further demonstrated high-resolution photoacoustic imaging with the obtained concave linear-array transducer.