AbstractWe have investigated melt blending approaches to interfacial localization of few‐layer graphene in cocontinuous polymer blends with polyethylene as one of the components. When linear low‐density polyethylene (LLDPE)/polypropylene (PP) or high‐density polyethylene (HDPE)/polylactic acid (PLA) and graphene were mixed all together, graphene preferred polyethylene over PP or PLA. When PP and graphene were premixed and blended with polyethylene, some graphene was trapped at the blend interface but not enough to cover the large interfacial area. In contrast, an ultralow electrical percolation was achieved (< 0.1 vol%) in HDPE/PLA blend due to smaller interfacial area. In another approach, polystyrene was added as a tertiary minor component to HDPE/PLA blends. This continuous interfacial layer containing graphene led to a low electrical percolation threshold (< 0.2 vol%). From these investigations, we suggest general ways to reduce a percolation threshold by kinetic control of the morphology of cocontinuous polymer blends.