Abstract
It has been difficult to construct electrical percolation networks in melt-compounded polymer composites due to shear-induced network destruction, especially for low graphene content composites. To overcome this issue, here we employ chemically expanded graphite (CEG) to construct conductive networks in which the polymer molecules would penetrate into the inner part of CEG to form a polymer entrapped in CEG structure. This novel polymer entrapped in CEG structure is very useful for the effective charge transfer and further construction of conductive networks in the process of melt compounding. The final polymer composites exhibit an ultralow electrical conductive percolation threshold of 0.29 vol% after melt compounding which is almost among the lowest level compared with those of other melt-compounded polymer composites. Besides, the thermal conductivity of the composites is also significantly enhanced. This strategy here has provided a new way to maintain the conductive networks and decrease the electrical percolation threshold in the melt-compounded polymer composites through constructing polymer entrapped in conductive fillers structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.