Objective: To study the neovascularization in regenerating and proliferating corneal cells following a standard alkali injury in rabbit eye. Methods: Three and six weeks after the creation of an alkali burn in the center of the right cornea of six albino rabbits, the animals were killed and histological sections from the cornea of both eyes were stained, photographed and studied for a possible formation of a neovascularization. The photographs were examined using the Quantimet image analyzer (Leica) and statistical analysis of the data was performed. Results: Sections of the injured cornea showed the formation of neovessels in the epithelial and superficial stromal layers. The neovascularization is present after 3 weeks of the corneal injury. After 6 weeks from the corneal alkali burn, neovessels are increased. Conclusions: There is a growing body of evidence suggesting that vascular abnormalities may play a crucial role in several ocular diseases. To improve our knowledge of the vascular involvement in these conditions, there is a need for a non-invasive imaging modality capable of assessing microcirculation within ocular tissue beds both in vitro and in vivo. This study shows that ultra-high sensitive optical microangiography, associated with other experimental techniques, is an adequate technique to visualize the eye surface microcirculations and to quantify microvascular vessel density under both normal and physio-pathological conditions.