Since the initial publication on the first Ti3C2T x MXene in 2011, there has been a significant increase in the number of reports on applications of MXenes in various domains. MXenes have emerged as highly promising materials for various biomedical applications, including photothermal therapy (PTT), drug delivery, diagnostic imaging, and biosensing, owing to their fascinating conductivity, mechanical strength, biocompatibility and hydrophilicity. Through surface modification, MXenes can mitigate cytotoxicity, enhance biological stability, and improve histocompatibility, thereby enabling their potential use in in vivo biomedical applications. MXenes are also known for their ability to absorb light in the near-infrared (NIR) region and generate heat by localised surface plasmon resonance (LSPR) effects and electron-phonon coupling. Optical excitation laser pulses result in hot photocarrier distribution in MXenes, which quickly transfers surplus energy to the crystal lattice and results in the internal conversion of light into heat with nearly 100% efficiency. The relaxation of hot carrier distribution by electron-phonon interactions leads to the cooling of the lattice by dissipating thermal energy to the surrounding environment. This heating effect of MXenes makes them potential photothermal agents (PTAs), particularly for PTT applications. The adjustable surface of MXenes and their high surface area-to-volume ratios are ideal for the combinatorial approach of PTT along with drug delivery, photodynamic therapy (PDT), bone regeneration and other applications. Since non-Ti MXenes are more biocompatible than Ti MXenes, they are promising candidates for different biomedical applications. This comprehensive review provides a concise overview of the current research patterns, properties, and biomedical applications of non-Ti MXenes, particularly in PTT and its combinatorial approaches.
Read full abstract