This study investigates the impact of Ultra-High Vacuum (UHV) Thermal annealing in a N₂/O₂ atmosphere on the passivation of Ar ion etched crystalline silicon (c-Si) surfaces. A comprehensive analysis of the resulting ultrathin Silicon OxyNitride Carbide layer (SiONC) was conducted using X-ray Photoelectron Spectroscopy (XPS), Ultra-Violet Spectroscopy (UPS), Photoluminescence Spectroscopy (PL), and Atomic Force Microscopy (AFM). XPS revealed a significant transformation in chemical composition from a carbon-rich contaminated surface SiO1.02C2.98 to an oxygen- and nitrogen-containing passivated layer SiO0.13N0.10C0.28. UPS measurements elucidated changes in the electronic structure and Fermi level position at the c-Si/SiONC interface. AFM imaging demonstrated the formation of non-uniform SiONC islands, influencing surface morphology. Notably, PL spectroscopy indicated enhanced orange and red luminescence with energies of 2.0 and 1.73 eV, respectively, attributed to the SiONC layer. The enhanced luminescence, coupled with improved thermal stability and oxidation resistance, positions the SiONC layer as a promising material for advancing the performance of silicon-based optoelectronic devices, such as solar cells and light-emitting diodes (LEDs). This study provides fundamental insights into the correlation between the chemical, electronic, and morphological properties of the SiONC layer and its potential for improving c-Si device performance.
Read full abstract