Abstract

Ultra-thin silicon oxynitride (SiOxNy) layers were deposited by direct interaction of plasma species formed in an atmospheric pressure plasma jet (APPJ) with a silicon wafer. APPJs have been ignited in mixtures of helium (He) together with several nitrogen-based compounds. The chemical composition of the APPJ treated silicon surfaces was analysed by ultra-high vacuum x-ray photoelectron spectroscopy (XPS). The obtained N 1s XPS spectra showed that even 5 min of APPJ treatment is sufficient to fabricate SiOxNy films with a few nanometre thickness. A Si substrate exposed to an APPJ generated in a mixture of He/NH3 resulted in the most efficient growth of SiOxNy films, indicated by the strongest N 1s XPS signal among all studied gas mixtures. Moreover, the N 1s spectra exhibited two major characteristics of chemical bonding structures attributed to nitrogen bonded to three silicon surface atoms, N–(S)3, and nitrogen bonded to two silicon surface atoms and one oxygen atom, (Si)2–N–O.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.