Abstract

Abstract Quantum dots (QDs) are promising semiconducting luminous nanocrystals with superior optoelectronic characteristics. Unfortunately, these nanocrystals are fragile when exposed to humid environment. Oxygen and moisture molecules could erode QDs’ structure and degrade their luminous ability, which severely hinders the wide application of QDs in optoelectronic devices. Therefore, it is significantly important to resist oxygen/moisture permeation in the packaging of these QDs converted devices. In this review, we briefly introduce the oxygen/moisture-induced degradation mechanism of QDs and then the permeation theories. Subsequently, we review some strategies for resisting oxygen/moisture permeation from a packaging perspective, and analyze them with the permeation theories. Finally, we outline some future directions for developing efficient oxygen/moisture resistance solutions of QDs converted optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.