Graphene oxide (GO) and reduced graphene oxide (rGO) have emerged as robust materials in the development of SAs for erbium-doped fiber lasers (EDFLs). Their exceptional optical properties, such as broadband absorption and fast recovery times, make them ideal candidates for achieving ultrashort pulse operation in EDFLs. With its higher oxygen content, GO offers greater nonlinearity and a tunable absorption spectrum, while rGO, yielded through chemical reduction, exhibits enhanced electrical conductivity and higher saturable absorption. These properties facilitate the generation of ultrashort pulses in EDFLs, which are highly desired for various medical imaging, telecommunications, and material processing applications. This review paper comprehensively analyzes the advancements in GO and rGO SAs in the context of EDFLs for mode-locking and Q-switching applications. The performance of EDFLs utilizing GO and rGO SAs is critically evaluated, focusing on key parameters, such as modulation depth, pulse duration, repetition rate, average power, pulse energy, peak power, and signal-to-noise ratio. Additionally, this review delves into the various synthesis methods of GO and rGO thin film, highlighting their impact on the optical properties and performance of SAs. The discussion on techniques to integrate the SAs into laser cavities includes direct deposition of nanoparticles/thin-film-based SAs, tapered-fiber-based SAs, and D-shaped SAs. Furthermore, the paper explores the challenges encountered during the fabrication of ideal GO and rGO SAs, with issues related to uniformity, stability, and tunability, along with proposed solutions to address these challenges. The insights provided offer valuable guidance for future research aimed at enhancing the performance of EDFLs using GO/rGO SAs.
Read full abstract