Considering pesticide residues cause significant harm to public health and the environment, developing a simple, sensitive, and reliable approach to pesticide residue detection to address this issue is necessary. In this study, an ultrasensitive and reliable surface-enhanced Raman scattering (SERS) sensor was developed using cetylpyridinium chloride as a protecting and reducing agent for the in situ synthesis and self-assembly of C-Ag nanoparticles on nanoporous GaN for the quantitative detection of thiram. A systematic investigation of the performance of the SERS sensor revealed that the SERS sensor delivered a limit of detection (LOD) of 10−14 M and an enhancement factor of up to 1.80 × 1011 with reasonable uniformity and reproducibility, with the stability of the SERS sensor demonstrated via long-term storage for up to 22 weeks in air. The enhancement mechanism of the SERS sensor was verified using a finite-difference time-domain simulation. The SERS sensor successfully detected thiram in real samples with an LOD of 10−10 M. Hence, this study provides an effective platform for monitoring food safety and the environment.
Read full abstract