Pile-bucket composite foundations are regarded as a promising solution for offshore wind power infrastructure. However, accurately assessing their vertical ultimate bearing capacity remains a technical challenge. Therefore, establishing an upper bound solution of the ultimate bearing capacity of the composite foundations is of significant importance for their promotion and application. This study begins with small-scale model tests, using Abaqus for modeling based on the relevant test conditions. Next, following model validation, the vertical bearing capacity of the composite foundations under different H/D ratios and the corresponding soil failure modes are investigated. According to the upper limit method and the ultimate equilibrium theory, the kinematic velocity field is subsequently constructed to derive the upper bound solution of the vertical bearing capacity. Finally, the effectiveness and accuracy of the proposed theoretical upper bound solution are verified against the results of model tests, and this study hopes to provide a reference for the future design of vertical bearing capacity of pile-bucket composite foundations.
Read full abstract