Abstract

AbstractSinusoidal corrugated profile webs have been popularly used in steel structural designs to replace the flat webs in conventional welded beams, while there are better performances in corrugated web beams (CWBs) regarding more stability and less material used to against beam failures caused by buckling. Previous studies have provided that CWBs enabled numerous favourable benefits to be recognised as alternatives to the traditional weld beams in designing structures. Furthermore, as CWBs are proposed as the major load‐carrying elements, the maximum deflection in the elastic range is one of the important beam properties that should be precisely estimated and calculated. To find an appropriate method in computing the maximum deflection of CWBs based on the first yield for civil communities in Australia, proposed equations based on other standards will be employed to calculate the theoretical results for the comparisons with simulation‐based results. While applying the linear analysis simulations provided by SAP 2000, ultimate limit state design theory has also been used with requirements stated by AS 4100. In this study, the results in theoretical calculations and numerical simulations have been compared to conclude that the highly defined equations by ASTM [37] and Sause et al. [38] could precisely estimate the maximum deflections of CWBs based on the first yield in conjunction with requirements and limitations in Australian standards, which could be adequate for the structural design calculations in Australian design fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call