Accurate prediction of station passenger flow is crucial for optimizing rail transit efficiency, but peak passenger flow in urban rail transit (URT) is often disrupted by random events, making predictions challenging. In this paper, in order to solve this challenge, the Bi-graph Graph Convolutional Spatio-Temporal Feature Fusion Network (BGCSTFFN)-based model is introduced to capture complex spatio-temporal correlations. A combination of a graph convolutional neural network and a Transformer is used. The model separately inputs land use (point of interest, POI) and station adjacency information as features into the BGCSTFFN model, using the Pearson correlation coefficient matrix, which is evaluated on real passenger flow dataset from 1 to 25 January 2019 in Hangzhou. The results showed that the model consistently provided the best prediction results across different datasets and prediction tasks compared to other baseline models. In addition, in tasks involving predictions with different combinations of inputs and prediction steps, the model showed superior performance at multiple prediction steps. Its practical application is validated by comparing the results of passenger flow prediction for different types of stations. In addition, the impact of these features on the prediction accuracy and the generalization ability of the model were verified by designing ablation experiments and testing on different datasets.
Read full abstract