In addition to the vertical external load and soil settlement load, the pile foundation in reinforced high-fill areas is also affected by the horizontal load caused by the rear stacking load, and pile stress is affected by the soil-arching effect in reinforced areas that have typical passive pile characteristics. In order to study the symmetry of the soil-arching effect of pile foundations in a reinforced-fill area, indoor model tests were designed and the relevant data for the pile foundation and reinforced soil under surcharge were obtained. Through the analysis, the following conclusions were drawn: the peak bending moment of the pile body is basically consistent with the position of the potential sliding surface of reinforced soil; the maximum shear force of the pile body appears about 150 mm below the embedding point; with an increase in depth, the soil-arching effect becomes obvious. There are two different forms of friction, soil-arching and direct soil-arching between piles and behind piles, and the soil between single-row piles has a symmetrical distribution. In addition to the vertical external load and soil settlement load, the pile foundation in reinforced high-fill areas will also be affected by the horizontal load caused by the rear stacking load, and pile stress will be affected by the soil-arching effect in reinforced areas, which has typical passive pile characteristics. In order to study the symmetry of the soil-arching effect of pile foundations in a reinforced-fill area, indoor model tests were designed, and the relevant data for pile foundation and reinforced soil under surcharge were obtained. Through analysis, the following conclusions were drawn: (1) the peak bending moment of the pile body is basically consistent with the position of the potential sliding surface of reinforced soil; the maximum shear force of the pile body appears about 150 mm below the embedding point; with an increase in depth, the soil-arching effect becomes obvious. There are two different forms of friction, soil-arching and direct soil-arching between piles and behind piles, and the soil between single-row piles has a symmetrical distribution.
Read full abstract