Previous studies on land use have largely focused on characteristics of quota allocation and spatial distribution based on time series analysis. However, indwelling patterns, combined space–time characteristics and terrain gradient effects are often hidden from the regional territorial spatial planning process. By using spatial econometric techniques, including hot spot analysis, landscape theory, a space–time cube model and a terrain–niche index, this paper aimed to assist regional planning by revealing these hidden characteristics in Guangdong Province, China. The results were as follows: urban construction land had formed an agglomerated region at the center of the study area, surrounded by many smaller satellite cities, which resembled a mainland–island metapopulation pattern. Three hot spot types—oscillating (32.45 % of the region), sporadic (1.85 %) and persistent (6.83 %)—formed the main space–time pattern throughout the study period. The main patterns included persistent hot spots in the Pearl River Delta, approximating a strip pattern of sporadic and oscillating hot spots from the east to west, with persistent cold spots in the north. Dry land cropping showed an increase in area at terrain levels 3–6 while in other terrains the area of dry land cropping decreased over time. These findings indicate that more attention needs to be paid to maintaining or adjusting the shape and equilibrium between the mainland and the island cities in the future. Steeper terrain is normally considered for cropland when conflicts exist for land use, which might decrease cropland quality to some extent. Hence, current territorial and spatial planning should focus on changing spatial disequilibrium and the reduction in cropland quality, which might result from the land policy of “superior occupation and inferior compensation”, to slow regional differences and to achieve sustainable development.
Read full abstract