Highlight. Electron beam treatment often requires bolus to augment surface dose to nearly 100%. There are no optimum bolus materials and hence a high-Z based clothlike material is investigated to reduce air column in treatment that provides optimum surface dose. This material is well suited as it can be used multiple times and can be sanitized. Characteristics of W-Si material is provided.Purpose /Objective(s). Electron beams are frequently used for superficial tumors. However, due to electron beam characteristics the surface dose is 75-95% of the prescribed dose depending on beam energy thus requiring placement of bolus to augment surface dose. Various types of boluses are commonly used in clinics, each having it's own unique limitation. Most bolus devices do not conform to the skin contour and create airgaps that are known to produce dose perturbations creating hot and cold spots. A cloth-like high-Z materials; Tungsten, (Z = 74) and Bismuth, (Z = 83) impregnated in silicone gel is investigated for electron bolus.Materials/Methods. Super soft silicone-gel based submillimeter thin tungsten and bismuth sheets were investigated for bolus for 6-12 MeV. Parallel plate ion chamber measurements were performed in a solid water phantom on a Varian machine. Depth dose characteristics were measured to optimize the thickness for surface dose to be 100% for selected electron therapy and validated with Monte Carlo simulations.Results. Silicone-gel tungsten and bismuth sheets produce significant electrons thus increasing surface dose. Based on measured depth dose, our data showed that tungsten sheets of 0.14 mm, 0.18 mm and 0.2 mm and Bismuth sheets of 0.42 mm, 0.18 mm and 0.2 mm provide 100% surface dose for 6, 9 and 12 MeV beams, respectively without any significant changes in depth dose except increasing surface dose.Conclusions. The new high-Z clothlike sheets are extremely soft but high tensile metallic bolus materials that can fit flawlessly on any skin contour. Only 0.2 mm thick sheets are needed for 100% surface dose without degradation of the depth dose characteristics. These materials are reusable and ideal for bolus in electron beam treatment. This investigation opens a new frontier in designing new bolus materials optimum for patient treatment.
Read full abstract