A promising and sought-after class of nanozymes for various applications is Pt-containing nanozymes, primarily Au@Pt, due to their easy preparation and remarkable catalytic properties. This study aimed to explore the freeze-thaw method for functionalizing Pt-containing nanozymes with oligonucleotides featuring a polyadenine anchor. Spherical gold nanoparticles ([Au]NPs) were synthesized and subsequently used as seeds to produce urchin-like Au@Pt nanoparticles ([Au@Pt]NPs) with an average diameter of 29.8 nm. The nanoparticles were conjugated with a series of non-thiolated DNA oligonucleotides, each consisting of three parts: a 5'-polyadenine anchor (An, with n = 3, 5, 7, 10; triple-branched A3, or triple-branched A5), a random sequence of 23 nucleotides, and a linear polyT block consisting of seven deoxythymine residues. The resulting conjugates were characterized using transmission electron microscopy, spectroscopy, dynamic light scattering, and emission detection of the fluorescent label at the 3'-end of each oligonucleotide. The stability of the conjugates was found to depend on the type of oligonucleotide, with decreased stability in the row of [Au@Pt]NP conjugates with A7 > A5 > 3A3 > 3A5 > A10 > A3 anchors. These [Au@Pt]NP-oligonucleotide conjugates were further evaluated using lateral flow test strips to assess fluorescein-specific binding and peroxidase-like catalytic activity. Conjugates with A3, A5, A7, and 3A3 anchors showed the highest levels of signals of bound labels on test strips, exceeding conjugates in sensitivity by up to nine times. These findings hold significant potential for broad application in bioanalytical systems.
Read full abstract