Accurate traffic models are of decisive importance for well-founded traffic engineering and represent the basic framework for comprehensive simulation studies as modelling of traffic demand. Using traffic count and speed measurements of road segments is a common approach for the calibration of a realistic traffic simulation although the data acquisition process can be at very extensive costs. From an academical point of view, there have been many studies addressing the problem of calibration. In this respect, the microscopic simulation software SUMO offers the usage of the tools flowrouter and routesampler for generating network simulations on the base of traffic count measurements. In this paper, we propose a robust method for the calibration of microscopic traffic simulations by using vehicle count and speed measurements from collected GPS-data. The developed approach is a two-step optimization process: The application of integer linear programming (ILP) as a priori optimization is followed by adopting an evolutionary algorithm for minimizing the a posteriori deviation between real and simulated traffic data. As a proof of concept, the proposed method is tested in a subnet-work model of the inner city of Friedrichshafen and compared with the ready-to-use tools from SUMO. The suggested method indicates a promising correlation between simulated and real traffic data showing better calibration results in comparison to the aforementioned functions SUMO provides. Since the approach is network-independent, it also offers the possibility of large-scale traffic calibration.