The cyano group is a typical electron-withdrawing group, which has aroused the interest of relevant researchers. Many papers reported the dispersed fluorescence spectra of o-hydroxybenzonitrile, its dimers, and complexes with small molecules, aiming to study the intermolecule hydrogen bond and the vibration features of the electronic ground state. There are also reports on using fluorescence excitation spectra to study excited state vibrations, but no report on the systematical analyzing of the vibration features of excited state spectra. Compared with fluorescence spectroscopy, resonance enhanced multiphoton ionization (REMPI) spectroscopy detects ions to obtain excited state energy level data, which has mass-resolution capability, and eliminates the interference of impurities with different charge-to-mass ratios. The strong electron-withdrawing ability of cyano group results in higher ionization energy for molecules containing cyano groups. Many REMPI experiments on benzonitrile derivatives require two-color lasers. In this paper, two-color resonance enhanced two-photon ionization experiment is performed by using a home-made linear time-of-flight mass spectrometer, and the vibration-resolved REMPI spectrum of o-hydroxybenzonitrile is obtained for the first time. Combining the high-precision density functional theory calculations with the Franck-Condon spectral simulations, the spectral characteristics are analyzed in detail, and a large number of fundamental, overtone and combined vibrations are found. The spectral assignment is carried out as accurately as possible. Most of the fundamental vibrations located at ring are assigned to the in-plane distortion or swing of the ring, which is related to the expansion of the ring during the molecular excitation. Theoretical and experimental results show that the low-frequency signal of REMPI spectrum is strong, the background is low, the band is less, and the resolution is good. As the vibration frequency increases, the signal changes in the worse direction. This is because the low-frequency spectrum mainly comes from the low-frequency fundamental vibrations and a little contribution from overtones. As the vibration frequency increases, the contributions from overtone and combined vibrations gradually increase, resulting in dense bands and low resolution. Theoretical calculations show that the high-order vibration and combination of multi-mode vibrations usually have a lower Franck-Condon factor, so the signal gradually becomes weak as the frequency increases, and the signal-to-noise ratio becomes worse.
Read full abstract