Abstract

Perfluorinated carboxylic acids (PFCAs) were derivatized with two types of aromatic compounds that contained a bromomethyl group, i.e., 2-(bromomethyl)naphthalene (BMN) and benzyl bromide (BB). The conditions for derivatization were optimized in terms of reaction temperature and time and the concentration of derivatizing reagent. Using these optimal conditions, the PFCAs-MN and PFCAs-B derivatives were measured by gas chromatography (GC) combined with mass spectrometry using an ultraviolet femtosecond laser (267 nm) as the ionization source. The efficiency of derivatization for PFCAs-B was higher than that for PFCAs-MN because of the smaller size of the chromophore (benzene). The ionization efficiency of PFCAs-MN, however, was better than PFCAs-B, since a larger sized chromophore (naphthalene) and then a larger molar absorptivity was preferable for resonance-enhanced two-photon ionization. Due to superior GC separation, BB was successfully used as the derivatizing agent for the trace analysis of PFCAs, with detection limits of 6.0, 8.4, and 9.5 ng/mL for perfluoroheptanoic, perfluorooctanoic, and perfluorononanoic acids, respectively. The other bromomethyl aromatic compounds were evaluated for use as a derivatization reagent in future studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.