A high-fidelity safety analysis method for pressurized water reactors (PWRs) is presented using a multiscale and multiphysics coupled code. Computational resolution of the conventional safety analysis can be greatly improved using this method in which the whole reactor vessel is modeled at a subchannel scale with around 5 million calculation meshes. Three-dimensional thermal hydraulics inside the reactor vessel is simulated using CUPID-RV with subchannel-scale thermal-hydraulic models for the reactor core. The subchannel models were validated using the legacy rod bundle experiments including single- and two-phase flow tests that were used in the validation of other subchannel analysis codes. The three-dimensional mesh was generated for the reactor vessel. Structured meshes were used in the core region for the subchannel model, and body-fitted unstructured meshes were applied for the downcomer, lower and upper plenums, and hot and cold legs. The number of meshes was optimized for a practical calculation. A three-dimensional core kinetics code (MASTER) and a one-dimensional system analysis code (MARS) were coupled with CUPID-RV for an accident analysis of PWRs. Subchannel-scale full-core steam line break accident analysis of the OPR1000 PWR was realized using the coupled code (MASTER/CUPID-RV/MARS) with a reasonable computation time, and thus, the present method can be used as a practical tool for three-dimensional safety analysis of PWRs.
Read full abstract